
DSC 204A: Scalable Data Systems

Fall 2025

1

https://hao-ai-lab.github.io/dsc204a-f25/

Staff
Instructor: Hao Zhang

TAs: Mingjia Huo, Yuxuan Zhang

@haozhangml

haozhang@ucsd.edu

@haoailab

https://twitter.com/haozhangml

Where We Are

Foundations of Data Systems

Cloud

Machine Learning Systems

Big Data

1980 - 2000

Logistics

• Beginning of Quarter Survey: 77% completion

• Finish the 3% and you all get 1 point!

4

Qualitative Estimates of Locality

Question: Does this function have good locality with respect to array a?

int sum_array_rows(int a[M][N])

{

 int i, j, sum = 0;

 for (i = 0; i < M; i++)

 for (j = 0; j < N; j++)

 sum += a[i][j];

 return sum;

}

Answer: yes

Assuming row-major
array

• • •

a

[0]

[0]

a

[0]

[N-1]

• • •

a

[1]

[0]

a

[1]

[N-1]

• • •

a

[M-1]

[0]

a

[M-1]

[N-1]

• • •

5

Locality Example

• Question: Does this function have good locality with respect to array a?

int sum_array_cols(int a[M][N])

{

 int i, j, sum = 0;

 for (j = 0; j < N; j++)

 for (i = 0; i < M; i++)

 sum += a[i][j];

 return sum;

}

Answer: no, unless…

M is very small

• • •

a

[0]

[0]

a

[0]

[N-1]

• • •

a

[1]

[0]

a

[1]

[N-1]

• • •

a

[M-1]

[0]

a

[M-1]

[N-1]

• • •

6

Example Exam Question

• Question: Can you permute the loops so that the function scans the 3-d

array a with a stride-1 reference pattern (and thus has good spatial locality)?

int sum_array_3d(int a[M][N][N])

{

 int i, j, k, sum = 0;

 for (i = 0; i < N; i++)

 for (j = 0; j < N; j++)

 for (k = 0; k < M; k++)

 sum += a[k][i][j];

 return sum;

}

7

Cache in action

0 1 2 3

4 5 6 7

8 9 10 11

12 13 14 15

8 9 14 3Cache

Memory
Larger, slower, cheaper memory
viewed as partitioned into “blocks”

Data is copied in block-sized
transfer units

Smaller, faster, more expensive
memory caches a subset of
the blocks

4

4

4

10

10

10

8

General Cache Concepts: Hit

0 1 2 3

4 5 6 7

8 9 10 11

12 13 14 15

8 9 14 3Cache

Memory

Data in block 14 is neededRequest: 14

14
Block 14 is in cache:
Hit!

9

General Cache Concepts: Miss

0 1 2 3

4 5 6 7

8 9 10 11

12 13 14 15

8 9 14 3Cache

Memory

Data in block 12 is neededRequest: 12

Block 12 is not in cache:
Miss!

Block 12 is fetched from
memory

Request: 12

12

12

12

Block 12 is stored in cache
• Placement policy:

determines where b goes
• Replacement policy:

determines which block
gets evicted (victim)

Cache in action

Cache

Memory

Processor

~100GB/s

~10GB/s

• If always cache hit, bandwidth?

• If always cache miss, bandwidth?

Open Question in Cache: ChatGPT

Cache

Memory

Processor

~100GB/s

~10GB/s

Parameters:
350 GB

• ChatGPT: every time ChatGPT outputs

token, it needs to see 350 GB

parameters

• How to optimize this?

Foundation of Data Systems

• Computer Organization

• Representation of data

• processors, memory, storage

• OS basics

• Process, scheduling

• Memory

What is Operation System?

• Layers between applications and hardware

• OS makes computer hardware useful to programmers

• Otherwise, users need to speak machine code to computer

• [Usually] Provides abstractions for applications

• Manages and hides details of hardware

• Accesses hardware through low/level interfaces unavailable to applications

• [Often] Provides protection

• Prevents one app/user from clobbering another

Hardware

OS

A Primitive OS v1

• OS v1: just a library of standard services [no protection]

• Simplifying assumptions:

• System runs one program at a time

• No bad users or programs (?)

• Problem: poor utilization

• poor utilization of hardware (e.g., CPU idle while waiting for disk)

• poor utilization of human user (must wait for each program to finish)

Hardware

OS: interfaces above hw drivers

OS v2: Multi-tasking

• Say: we extend the OS a bit to support many APPs

• When one process blocks (waiting for disk, network, user input, etc.) run another

process

• Problem: What can ill-behaved process do?

• Go into infinite loop and never relinquish CPU

• Scribble over other processes’ memory to make them fail

• OS provides mechanisms protection to address these problems:

• Preemption – take CPU away from looping process

• Memory protection – protect one process’ memory from one another

Hardware

OS: support > 1 apps

What is A Real OS?

• OS: manage and assign hardware resources to apps

• Goal: with N users/apps, system not N times slower

• Idea: Giving resources to users who actually need them

• What can go wrong?

• One app can interfere with other app (need isolation)

• Users are gluttons, use too much CPU, etc. (need scheduling)

• Total memory usage of all apps/users greater than machine’s RAM

(need memory management)

• Disks are shared across apps / users and must be arranged properly

(need file systems)

Summary of OS: a software between apps and hardware

• Goal 1: Provide convenience to users

• Goal 2: Efficiency -- Manage compute, memory, storage

resources

• Goal 2.1: Running N processes Not N times slower

• As fast as possible

• Goal 2.2: Running N apps

• Even when their total memory >> physical memory cap

• Goal 3: Provide protection

• One process won’t mess up the entire computer

• One process won’t mess up with other processes

System calls

Process management

Memory management

Summary of OS: a software between apps and hardware

• Goal 1: Provide convenience to users

• Goal 2: Efficiency -- Manage compute, memory, storage

resources

• Goal 2.1: Running N processes Not N times slower

• As fast as possible

• Goal 2.2: Running N apps

• Even when their total memory >> physical memory cap

• Goal 3: Provide protection

• One process won’t mess up the entire computer

• One process won’t mess up with other processes

System calls

Process management

Memory management

19

OS provides Isolation using System Calls

“System Call” APIs: Isolation and protection

Process

Management

Main Memory

Management
Filesystems

Device

Drivers
Networking

Kernel

Components

• System call: The layer for isolation -- it abstracts the hardware

and APIs for programs to use

Functionality

Virtualize

processor;

“Process”

abstraction;

Virtualize

Main Memory

Virtualize

disks; “File”

abstraction;

Talk to

other I/O

devices

Commun.

over

network

Hardware device-specific programs

Hardware

Foundation of Data Systems

• Computer Organization

• Representation of data

• processors, memory, storage

• OS basics

• Process, scheduling

• Memory

21

Processes - the central abstraction in OS

• Definition: A process is an instance of a running program.

• One of the most profound ideas in computer science

• Not the same as “program” or “processor”

22

Processes - the central abstraction in OS

• Process provides each program with two key abstractions (for

resources):

• Compute Resource

• Each program seems to have exclusive use of the CPU

• Provided by kernel mechanism called context switching

• Memory Resource

• Each program seems to have exclusive use of main memory.

• Provided by kernel mechanism called virtual memory CPU
Registers

Memory

Stack

Heap

Code

Data

25

Multiprocessing in OS: The Illusion

• Computer runs many processes simultaneously

CPU
Registers

Memory

Stack

Heap

Code

Data

CPU
Registers

Memory

Stack

Heap

Code

Data …

CPU
Registers

Memory

Stack

Heap

Code

Data

26

Multiprocessing Example

top command in terminal: many processes, Identified by Process ID (PID)

• Assign individual memory (say 1/3) to each APP

• Assign CPU to work on an APP until completion -> then next

28

Multiprocessing: A strawman solution

CPU
Registers

Memory

Stack

Heap

Code

Data

Memory

Stack

Heap

Code

Data …

Memory

Stack

Heap

Code

Data

29

Multiprocessing: A strawman solution

• Assign individual memory (say 1/3) to each APP

• Assign CPU to work on an APP until completion -> then

next

CPU
Registers

Memory

Stack

Heap

Code

Data

Memory

Stack

Heap

Code

Data …

Memory

Stack

Heap

Code

Data

30

Multiprocessing: A strawman solution

• Assign individual memory (say 1/3) to each APP

• Assign CPU to work on an APP until completion -> then

next

CPU
Registers

Memory

Stack

Heap

Code

Data

Memory

Stack

Heap

Code

Data …

Memory

Stack

Heap

Code

Data

G1. Convenient?

G3: protection?

G2. Efficient?

!!!we are N times slower when

running N processes

MemoryMemoryMemory

31

Multiprocessing: Time sharing of processors

CPU
Registers

Stack

Heap

Code

Data

Stack

Heap

Code

Data

Saved

registers

Stack

Heap

Code

Data

Saved

registers

…

t = 1

• Idea: Virtualize the CPU time as time slices
• Assign time slices to different processes

32

Multiprocessing: Time sharing of processors

• Save current registers in memory

MemoryMemoryMemory

Stack

Heap

Code

Data

Stack

Heap

Code

Data

Saved

registers

Stack

Heap

Code

Data

Saved

registers

…

CPU
Registers

t = 1

33

Multiprocessing: Time sharing of processors

• Save current registers in memory

MemoryMemoryMemory

Stack

Heap

Code

Data

Stack

Heap

Code

Data

Saved

registers

Stack

Heap

Code

Data

Saved

registers

…

CPU
Registers

Saved

registers

t = 1

34

Multiprocessing: Time sharing of processors

• Assign time slice t = 2 to the next process

• Resume progress: Move Saved registers from memory to CPU

MemoryMemoryMemory

Stack

Heap

Code

Data

Stack

Heap

Code

Data

Saved

registers

Stack

Heap

Code

Data

Saved

registers

…

CPU
Registers

Saved

registers

t = 2

35

Multiprocessing: Time sharing of processors

• Then we repeat.

• This is called context switch

MemoryMemoryMemory

Stack

Heap

Code

Data

Stack

Heap

Code

Data

Saved

registers

Stack

Heap

Code

Data

Saved

registers

…

CPU
Registers

Saved

registers

t = N

36

Multiprocessing: Time sharing of multiple processors

Multiple CPU cores?

1. All processors sweep from left (1st process) to right (last process)

2. Each process accounts for ½ of the processes

MemoryMemoryMemory

Stack

Heap

Code

Data

Stack

Heap

Code

Data

Saved

registers

Stack

Heap

Code

Data

Saved

registers

…

CPU1
Registers

Saved

registers

CPU2
Registers

Let’s Implement It!

Physical

Processor

OS’s virtualized CPU abstraction

PID1 PID2 PID3
…

GAP1: How to virtualize CPU resources temporally and spatially?

38

Temporal Abstraction: Process State and CPU Time

❖ OS keeps moving processes between 3 states:

❖ Gantt Chart: A viz. to
show what process runs
when (on processor)

P1 Idle P2 P1 P2 …

Time

Scheduling question naturally emerges:
Q: how to schedule processes on time axis so the objective is optimal?

39

Scheduling Policies/Algorithms

• Schedule: Record of what process runs on each CPU when

• Policy controls how OS time-shares CPUs among processes

• Key terms for a process (aka job):

• Arrival Time: Time when process gets created

• Job Length: Duration of time needed for process

• Start Time: Time when process first starts on processor

• Completion Time: Time when process finishes/killed

• Response Time = Start Time — Arrival Time

• Turnaround Time = Completion Time — Arrival Time

• Workload: Set of processes, arrival times, and job lengths that OS

Scheduler has to handle

40

Scheduling Policy: FIFO

❖ First-In-First-Out aka First-Come-First-Serve (FCFS)

❖ Ranking criterion: Arrival Time; no preemption allowed

P1 P2 P2 P2 P2 P3

0 10 20 30 40 50 60 70 80

Time

Example: P1, P2, P3 of lengths 10,40,10 units arrive closely in that order

Process
Arrival
Time

Start
Time

Completion
Time

Response
Time

Turnaround
Time

P1 0 0 10 0 10

P2 0 10 50 10 50

P3 0 50 60 50 60

Avg: 20 40

❖ Main con: Short jobs may wait a lot, aka “Convoy Effect”

41

Scheduling Policy: SJF

❖ Shortest Job (next) First

❖ Ranking criterion: Job Length; no preemption allowed

P1 P3 P2 P2 P2 P2

0 10 20 30 40 50 60 70 80

Time

Example: P1, P2, P3 of lengths 10,40,10 units arrive closely in that order

Process
Arrival
Time

Start
Time

Completion
Time

Response
Time

Turnaround
Time

P1 0 0 10 0 10

P2 0 20 60 20 60

P3 0 10 20 10 20

Avg: 10 30

❖ Main con: Not all Job Lengths might be known beforehand

❖ Long processes may be held off indefinitely

(FIFO Avg: 20 and 40)

42

Example Exam Q1: Round Robin Schedule

❖ RR does not need to know job lengths

❖ Fixed time quantum given to each job; cycle through jobs

Example: P1, P2, P3 of lengths 10,40,10 units arrive closely in that order

❖ RR is often very fair, but Avg Turnaround Time goes up!

P1 P2 P3 P1 P2 P3 P2 P2 P2 P2 P2 P2

0 5 10 15 20 25 30 35 40 45 50 55 60 65 70 75

Quantum is 5 Time

43

Example Exam Q2: SCTF
❖ Shortest Completion Time First

❖ Jobs might not all arrive at same time; preemption possible

P2 P1 P2 P3 P2 P2 P2

0 10 20 25 35 45 55 60 70 80

Time

Example: P1, P2, P3 of lengths 10,40,10 units arrive at different times

P1 arrives; switch P3 arrives; switch

44

Scheduling Policies/Algorithms

• In general, not all Arrival Times and Job Lengths will be known

beforehand. But preemption is possible.

• Key Principle: Inherent tension in scheduling between overall

workload performance and allocation fairness

• Performance metric is usually Average Turnaround Time

• Many fairness metrics exist, e.g., Jain’s fairness index

• 100s of scheduling policies studied! Well-known ones: FIFO, SJF,

STCF, Round Robin, Random, etc.

• Different criteria for ranking; preemptive vs not

• Complex “multi-level feedback queue” schedulers

• ML-based schedulers are “hot” nowadays!

Scheduling in ChatGPT

S1 Please help me on

assignments…

S2 Please summarize

the readings…

S3 Please tell a joke

with 1000 words…

• What is the response time

• What is the turnover time

• What is fairness?

• Do we know the job length?

• Can we run S1/S2/S3

together?

• How to schedule?

	Slide 1: DSC 204A: Scalable Data Systems Fall 2025
	Slide 2: Where We Are
	Slide 3: Logistics
	Slide 4: Qualitative Estimates of Locality
	Slide 5: Locality Example
	Slide 6: Example Exam Question
	Slide 7: Cache in action
	Slide 8: General Cache Concepts: Hit
	Slide 9: General Cache Concepts: Miss
	Slide 10: Cache in action
	Slide 11: Open Question in Cache: ChatGPT
	Slide 12: Foundation of Data Systems
	Slide 13: What is Operation System?
	Slide 14: A Primitive OS v1
	Slide 15: OS v2: Multi-tasking
	Slide 16: What is A Real OS?
	Slide 17: Summary of OS: a software between apps and hardware
	Slide 18: Summary of OS: a software between apps and hardware
	Slide 19: OS provides Isolation using System Calls
	Slide 20: Foundation of Data Systems
	Slide 21: Processes - the central abstraction in OS
	Slide 22: Processes - the central abstraction in OS
	Slide 25: Multiprocessing in OS: The Illusion
	Slide 26: Multiprocessing Example
	Slide 28: Multiprocessing: A strawman solution
	Slide 29: Multiprocessing: A strawman solution
	Slide 30: Multiprocessing: A strawman solution
	Slide 31: Multiprocessing: Time sharing of processors
	Slide 32: Multiprocessing: Time sharing of processors
	Slide 33: Multiprocessing: Time sharing of processors
	Slide 34: Multiprocessing: Time sharing of processors
	Slide 35: Multiprocessing: Time sharing of processors
	Slide 36: Multiprocessing: Time sharing of multiple processors
	Slide 37: Let’s Implement It!
	Slide 38: Temporal Abstraction: Process State and CPU Time
	Slide 39: Scheduling Policies/Algorithms
	Slide 40: Scheduling Policy: FIFO
	Slide 41: Scheduling Policy: SJF
	Slide 42: Example Exam Q1: Round Robin Schedule
	Slide 43: Example Exam Q2: SCTF
	Slide 44: Scheduling Policies/Algorithms
	Slide 45: Scheduling in ChatGPT

