https://hao-ai-1lab.github.1o/dsc204a-125/

DSC 204A: Scalable Data Systems
Fall 2025

Staift
Instructor: Hao Zhang
TAs: Mingjia Huo, Yuxuan Zhang

¢ @haozhangml) @haoailab
haozhang@ucsd. edu

https://twitter.com/haozhangml

Where We Are

Machine Learning Systems

Big Data

Foundations of Data Systems 1980 - 2000

LOoQistiCS

®* Beginning of Quarter Survey: /7% completion

* Finish the 3% and you all get 1 point!

Qualitative Estimates of Locality

int sum array rows (int a[M] [N])

{
Assuming row-major int i, j, sum = 0;
array for (i = 0; i < M; i++)
for (j = 0; j < N; Jj++)
sum += a[i] []];
return sum;
a a a a a a
Answer: yes [0] | « = « [[O] [[2] f = « - | [1] [M-1]f « < + [[M-1]
[0] [N-1]]| [O] [N-1] [0] [N-1]

Question: Does this function have good locality with respect to array ae

Locality Example

int sum array cols(int a[M] [N])

{

int 1, j, sum = 0;

for (j = 0; j < N; j++)
for (i = 0; i < M; i++) Answer: no, unless...

sum += a[1][]]-
return sum; M is very small

®* Question: Does this function have good locality with respect to array ae

[0 | ¢ = « ([[O | L] | = = | [1] [M-1]f = + -« |[M-1]
[0] [N-1]] [O] [N-1] [0] [N-1]

Example Exam Question

int sum array 3d(int a[M] [N][N])
{

int 1, j, k, sum = 0O;

for (i = 0; i < N; i++)

for (j = 0; j < N; j++)
for (k = 0; k < M; k++)
sum += alk][1i][]j];

return sum;

* Question: Can you permute the loops so that the function scans the 3-d
array a with a stride-1 reference pattern (and thus has good spatial locality) e

Cache In action

Smaller, faster, more expensive

Cache EI EI ZI memory caches a subset of

the blocks

Data is copied in block-sized

transfer units

Larger, slower, cheaper memory
viewed as partitioned into “blocks”

General Cache Concepts: Hit

Cache

Memory

Request: 14

[8 J[o J[aa][3]

Lo [2][2][3|
L ¢ s s |l 7 |
L8 [9 J[w0 || 11 |

Data in block 14 is needed

Block 14 is in cache:
Hit!

General Cache Concepts: MIss

Memory

Request: 12

EI Request: 12

[o J[1 [2]
[¢ [5 |[6 |
[20 |

[8 [9 |[10
[22 |[13 |[14 |

Data in block 12 is needed

Block 12 is not in cache:
Miss!

Block 12 is fetched from
memory

Block 12 is stored in cache

* Placement policy:
determines where b goes

* Replacement policy:
determines which block
gets evicted (victim)

Cache In action

Processor tf’,?
* |t always cache hit, bandwidth? Y ~1O0CE/S
* |f always cache miss, bandwidth? Cache
Y ~10GB/s

Memory a000

Open Question in Cache: ChatGPT

Processor ‘

* ChatGPT: every time ChatGPT outputs ~100GB/s
foken, It needs to see 350 GB Cache
parameters

* How to optimize this? ‘ ~10GB/s

Memory
Parameters:

350 GB

Foundation of Data Systems

* Computer Organization

®* Representation of data

® Drocessors, memory, storage
* OS basics

®* Process, scheduling

* Memory

What Is Operation Systeme

* Layers between applications and hardware

® 9

* OS makes computer hardware useful to programmers

® Otherwise, users need to speak machine code to computer
®* [Usually] Provides abstractions for applications

* Manages and hides details of hardware

® Accesses hardware through low/level interfaces unavailable to applications
* [Often] Provides protection

® Prevents one app/user from clobbering another

A Primitive OS v

® OS vl:just alibrary of standard services [no profection]

O

* Simplitying assumptions:
® System runs one program at a fime
®* No bad users or programs (¢)
* Problem: poor utilization
* poor utllization of hardware (e.g., CPU idle while waiting for disk)

® poor utllization of human user (must wait for each program to finish)

OS v2: Multi-tasking

* Say: we extend the OS a bit to support many APPs
* When one process blocks (waiting for disk, network, user input, etc.) run another

prOceSS c o

* Problem: What can ill-behaved process doe
® Go into infinite loop and never relinquish CPU

®* Scribble over other processes’ memory to make them taill

®* (OS provides mechanisms protection fo address these problems:
®* Preemption — take CPU away from looping process
® Memory protection — protect one process’ memory from one another

What is A Real OS¢

* OS: manage and assign hardware resources to apps
* Goal: with N users/apps, system not N times slower
* |dea: Giving resources to users who actually need them
* What can go wronge
* One app can interfere with other app (heed isolation)
® Users are gluttons, use too much CPU, etc. (heed scheduling)
* Total memory usage of all apps/users greater than machine’s RAM
(heed memory management)
® Disks are shared across apps / users and must be arranged properly
(heed file systems)

Summary of OS: a software between apps and hardware

* Godal 1: Provide convenience to users
* Goal 2: Efficiency -- Manage compute, memory, storage
resources
* Goal 2.1: Running N processes Not N times sldneeess management
® As fast as possible Memory management
* Goal 2.2: Running N apps
* Even when their total memory >> physical memory cap
* Godal 3: Provide protection
System calls
®* One process won't mess up the entire computer

®* One process won't mess up with other processes

Summary of OS: a software between apps and hardware

* Godal 1: Provide convenience to users
* Goal 2: Efficiency -- Manage compute, memory, storage
resources
* Goal 2.1: Running N processes Not N times sldneeess management
® As fast as possible Memory management
* Goal 2.2: Running N apps
* Even when their total memory >> physical memory cap
* Goal 3: Provide protection
System calls
®* One process won't mess up the entire computer

®* One process won't mess up with other processes

OS provides Isolation using System Calls

* System call: The layer for isolation -- it abstracts the hardware
and APIs for programs to use

ystem Call” APls: Isolation and protection

Kernel Process Main Memory || . . Device
Components Filesystems || Networking
| Vinualize Virtualize

:| processor; . . o wenn.n Commun. Talkto :

: PREEY [, Virtualize disks; “File :
Functionality | “Process - e over other 1/O :
: . Main Memory abstraction; . :

:] abstraction; network devices :

Hardware device-specific programs

Hardware ' ‘ e 3

Foundation of Data Systems

* Computer Organization

®* Representation of data

® Drocessors, memory, storage
* OS basics

®* Process, scheduling

* Memory

21

Processes - the central abstraction in OS

®* Definition: A process Is an instfance of a running program.

®* One of the most profound ideas in computer science

*r Task Manager
File Options View

Processes Performance App history Startup Users | Details Services

: 6% 45%

= . i
F Aemor

E] Settings

1= Task Manager

2 WinaeroTweaker (2)

Bl Windows Command Prifgess...

v Windows Explorer

Background processes (21)
[w7] Application Frame Host
(m:| COM Surrogate
® | Cortana ()
A CTF Loader

[w7| Host Process for Windows Tasks

E Microsoft Edge (5)

e | Microsoft Outlook Communica...

Fewer details

SO Activity Monitor
‘ ‘(ﬂ @ | All Processes » Q- |
. Quit Process Inspect Sample Process Show Filter
PID Process Name User #CPUW Threads Real Mem Kind
/833 ghj Safan 9.5 11 1.11 GB Intel (64 biv)
8181 I3 iTunes 4.6 12 72.8 MB Intel
0 kernel task 4.5 70 163.1 MB Intel
7840 Flash Player (Safari Internet plu... 4.2 7 50.4 M8 Intel
55 WindowServer 3.3 5 172.3 MB Intel (64 bit)
1633 BB Activity Monitor 1.4 2 30.8 MB Intel (64 bit)
1636 actwvitymonitord 1.2 1 1.4 MB Intel (64 bit)
120 Synergys 0.8 5 33.7 M8 Intel
84 SystemUiServer 0.7 4 30.8 MB Intel (64 bit)
568 M Terminal 0.3 S 23.9 M8 Intel (64 biv)
8265 @ AlZMP3 0.3 S 27.8 MB Intel
' CPU | System Memory « Disk Activity Disk Usage Network
Free: S0.2 MB = VM size: 164.09GB
Wired: 503.4M8 | Page ins: 6.27 GB ’
Active: . L] Page outs: 831.9M8
Inactive: 1.02GB 2] Swap used: 169.7 M8
: 3.75 CB
Used: 3.95GB

22

Processes - the central abstraction in OS

®* Process provides each program with two key abstractions (for
resources):

* Compute Resource
®* Fach program seems to have exclusive use of the CPU
®* Provided by kernel mechanism called context switching
* Memory Resource
®* Fach program seems to have exclusive use of main me

®* Provided by kernel mechanism called virtual memory

CPU

25

Multiprocessing in OS: The lllusion

* Computer runs many processes simultaneously

Multiprocessing Example

top command in terminal: many processes, |[dentified by Process ID (PID)

Frrocezzez; 120 LOLgl, J rdoring,., 3 ZLUCE . 1LW3 Slesplny, bll Lhredlds= I U W
Load Avg: 1,048, 1,13, 1,14 CPU usage: 3,274 user, 5,158 =sys, 91.56% idle

SharedLibz: 576K resident, OB data, OB linkedit,

MemBegions: 27958 total, 1127M resident, 35M private, 494 shared,

Phystem: 1039M wired, 1974M active, 10B2M inactiwve, 4076M used, 18M free, |
VM 280G vsize, 1091M framework wsize, 23075213(1) pageins, 5843367(0) pageouts,

Networks: packets: 410482208/1106 in, BREOSAOSES 7L out, r
Dizks: 178742391/°3490 read, 12847573/0340 written, I

he q1 ek 7412k 1BH 45l 24 550 |
ak 41 24b4k Bl48k 9376k 44K 24 24 |
52 IE 200k 872k hadk 3700k Z3BEK
21 33 nZk 21Bk ok 1k 2592 |

T ——

LOE/E mdworker
D410 xterm
LOOFE emacs

™ Lo}

011,17
QL 13
QL 06, 70

s s s s Ly B | o

+

+

+

FII COMMAMI =LPU TIME #TH #l0 #PUET #MREG EPEWT RSHRD RSIZE WPEMT WSIZE
93217- Microsoft OFf 0,0 02:i23.34 4 1 202 418 Z1M 24 21M =12y fbal
393051 wsbmuxd 0,0 Q004,10 3 1 47 bb 4ibk 216k 450k BOK 2422
93006 iTunesHelper 0,0 00301235 2 1 ha /o F28k 3124k 1124k 43K 2423
o408 bash 0.0 Qozo0,11 1 () 21 24 224k FazZk dodk 17K 2570
o480 xterm 0,0 Q000,55 1 () 52 IE Bobk 872k B3k 3728k ZL3BEK
05939- Microsoft Ex 0,3 21:58,397 10 3 AB60 0 954 1EM =y 45 114K 1057K
D470l =leep 0,0 Qoo oo] () 17 21 32k 212k 3Bk SbaZk Za70K
4733 launchdadd 0,0 Q000,00 2 1 A3 Dy a8k 220k 1736k 45K 24003
4737 top b, Q002,53 171 0 Al 24 1416k 216k 2124k 17K 2570
24719 automountd 0,0 Q000,02 7 1 ak b4 cbOk 216k 2184k Hak 241 .5H
4701 ocspd 0,0 Q000,05 4 1 b1 hd 1268k 2644k 3132k BOK 2426k
D4Bbl Lrab OB Q002,72 b 3 222+ Ag9+ 1AM+ ZBM+ 40M+ FBM+ 55BN+
h4B59 cookied 0,0 Qo015 & 1 41 b1 2316k 224k 4088k 42K 2411H
hagls mdworker 0,0 Q001,67 4 1

0,0 3 1

0,0 1 ()

0,0 1 ()

o ——]

28

Mulfiprocessing: A strawman solution

* Assign individual memory (say 1/3) to each APP

* Assign CPU to work on an APP until completion -> then next

CPU

29

Mulfiprocessing: A strawman solution
* Assign individual memory (say 1/3) to each APP

* Assign CPU to work on an APP until completion -> then

Nnext

CPU

30

Mulfiprocessing: A strawman solution

* Assign individual memory (say 1/3) to each APP

* Assign CPU to work on an APP until completion -> then

Nnext

G1. Conveniente
G3. protection?
G2. Efficiente
lllwe are N times slower when
running N processes

31

Multiprocessing: Time sharing of processors

5 é
f f
5 : registers registers
[CPU |
; 5

f=1

» |dea: Virtualize the CPU time as fime slices
* Assign fime slices to different processes

Multiprocessing: Time sharing of processors

Saved
reqisters

Saved
reqisters

® Save current registers in memory

Multiprocessing: Time sharing of processors

Memory Memory

Memory

Code
reqgisters reqgisters reqgisters

| _CPU_|:

5 5

® Save current registers in memory

34

Code

Saved
reqisters

Saved
reqisters

Saved
reqisters

—F
| _CPU |
| [Registers | |-

t=2

® Assign tfime slice t = 2 to the next process
® Resume progress. Move Saved registers from memory to CPU

Multiprocessing: Time sharing of processors

Memory Memory Memory

Code
reqgisters reqgisters reqgisters

| CPU_|:

5 5
f=N

* Then we repeat.
* This Is called context switch

36

Multiprocessing: Time sharing of multiple processors

Memory Memory

Memory

Code Code

Saved Saved
reqisters reqisters

[cpur [cpuz |
| [Registers | |::| [Registers] |

Saved
reqisters

Multiple CPU corese
1. All processors sweep from left (15t process) to right (last process)

2. Each process accounts for 4 of the processes

Let’s Implement 1!

PID1: iPID2i :PID3!

38

Temporal Abstraction: Process State and CPU Time

OS keeps moving processes between 3 states:

Descheduled Ny Gantt Chart: A viz. to
N Y show what process runs
when (on processor)
/0 initiat\ /'/O: done PL Idle P2 PL P2
Blocked Time

Scheduling guestion naturally emerges:
Q: how to schedule processes on fime axis so the objective is optimale

Scheduling Policies/Algorithms

®* Schedule: Record of what process runs on each CPU when
® Policy controls how OS fime-shares CPUs among processes
®* Key terms for a process (aka job):

* Arrival Time: Time when process gets created

* Job Length: Duration of time needed for process
® Start Time: Time when process first starts on processor
* Completion Time: Time when process finishes/killed

® Response Time = Start Time — Arrival Time
* Turnaround Time = Completion Time — Arrival Time

* Workload: Set of processes, arrival times, and job lengths that OS
Scheduler has fo handle

Scheduling Policy: FIFO

First-In-First-Out aka First-Come-First-Serve (FCFS)
Ranking criterion: Arrival Time; no preemption allowed

Example: P1, P2, P3 of lengths 10,40,10 units arrive closely in that order

P1 P2 P2 P2 P2 P3

0 10 20 30 40 50 60 /0 30
Time —m—mmmmm8m8@™@™mmm@@8@™—

Arrival Start Completion Response Turnaround
Process
Time Time Time Time Time
P1 0 0 10 0 10
P2 0 10 50 10 50
P3 0 50 60 50 60
Avg: 20 40

Main con: Short jobs may wait a lot, aka "Convoy Effect”

Scheduling Policy: SJF

Shortest Job (next) First
Ranking criterion: Job Length; no preemption allowed

Example: P1, P2, P3 of lengths 10,40,10 units arrive closely in that order

PL P33 P2 P2 P2 P2
0 10 20 30 40 50 60 70 80

Time —m—mmmmm8m8@™@™mmm@@8@™—

Arrival Start Completion Response Turnaround
Process
Time Time Time Time Time
P1 0 0 10 0 10
P2 0 20 60 20 60
P3 0 10 20 10 20
(FIFO Avg: 20 and 40) Avg: 10 30

Main con: Not all Job Lengths might be known beforehand
Long processes may be held off indefinitely

42

Example Exam Q1: Round Robin Schedule

RR does not need to know job lengths
Fixed time quantum given to each job; cycle through jobs

Example: P1, P2, P3 of lengths 10,40,10 units arrive closely in that order

PL P2 P3 P1L P2 P3 P2 P2 P2 P2 P2 P2
0 5 10 15 20 25 30 35 40 45 50 55 60 65 70 75

Quantumis 5 Time —m™m™m™m™m™™8™8™@8 ™

RR is often very fair, but Avg Turnaround Time goes up!

43

Example Exam Q2: SCTF

Shortest Completion Time First
Jobs might not all arrive at same time; preemption possible

Example: P1, P2, P3 of lengths 10,40,10 units arrive at different times

P2 P1 P2 P3 P2 P2 P2

0 10 20 5 35 45 55 60 /0 30
Time —m—mmmmmmMmM8™@™Mmm™—

P1 arrives:; switch P3 arrives: switch

44

Scheduling Policies/Algorithms

* In general, not all Arrival Times and Job Lengths will be known
betorehand. But preemption is possible.

® Key Principle: Inherent tension in scheduling between overall
workload performance and allocation fairness

®* Performance metric is usually Average Turnaround Time

* Many fairness metrics exist, e.g., Jain’s fairness index

®* 100s of scheduling policies stud

ied! Well-known ones: FIFO, SJF,
STCF, Round Robin, Random, et

C.

® Different criteria for ranking; preemptive vs not

* Complex "multi-level tfeedback queue” schedulers

* ML-based schedulers are “hot” nowadays!

Scheduling in ChatGPT

* What is the response time

/ e What is the turnover time

— 32 * What is fairness?
\ * Do we know fthe job length?
S3 * Canwerun S1/S2/S3
tfogethere

* How 1o schedule?

	Slide 1: DSC 204A: Scalable Data Systems Fall 2025
	Slide 2: Where We Are
	Slide 3: Logistics
	Slide 4: Qualitative Estimates of Locality
	Slide 5: Locality Example
	Slide 6: Example Exam Question
	Slide 7: Cache in action
	Slide 8: General Cache Concepts: Hit
	Slide 9: General Cache Concepts: Miss
	Slide 10: Cache in action
	Slide 11: Open Question in Cache: ChatGPT
	Slide 12: Foundation of Data Systems
	Slide 13: What is Operation System?
	Slide 14: A Primitive OS v1
	Slide 15: OS v2: Multi-tasking
	Slide 16: What is A Real OS?
	Slide 17: Summary of OS: a software between apps and hardware
	Slide 18: Summary of OS: a software between apps and hardware
	Slide 19: OS provides Isolation using System Calls
	Slide 20: Foundation of Data Systems
	Slide 21: Processes - the central abstraction in OS
	Slide 22: Processes - the central abstraction in OS
	Slide 25: Multiprocessing in OS: The Illusion
	Slide 26: Multiprocessing Example
	Slide 28: Multiprocessing: A strawman solution
	Slide 29: Multiprocessing: A strawman solution
	Slide 30: Multiprocessing: A strawman solution
	Slide 31: Multiprocessing: Time sharing of processors
	Slide 32: Multiprocessing: Time sharing of processors
	Slide 33: Multiprocessing: Time sharing of processors
	Slide 34: Multiprocessing: Time sharing of processors
	Slide 35: Multiprocessing: Time sharing of processors
	Slide 36: Multiprocessing: Time sharing of multiple processors
	Slide 37: Let’s Implement It!
	Slide 38: Temporal Abstraction: Process State and CPU Time
	Slide 39: Scheduling Policies/Algorithms
	Slide 40: Scheduling Policy: FIFO
	Slide 41: Scheduling Policy: SJF
	Slide 42: Example Exam Q1: Round Robin Schedule
	Slide 43: Example Exam Q2: SCTF
	Slide 44: Scheduling Policies/Algorithms
	Slide 45: Scheduling in ChatGPT

